Growth Factor and Vascular Endothelial Growth Factor Expression Acidosis Inhibits Endothelial Cell Apoptosis and Function and Induces Basic Fibroblast
نویسندگان
چکیده
Endothelial cells are exposed to an acidotic environment in a variety of pathological and physiological conditions. However, the effect of acidosis on endothelial cell function is still largely unknown, and it was evaluated in the present study. Bovine aortic endothelial cells (BAECs) were grown in bicarbonate buffer equilibrated either with 20% CO2 (pH 7.0, acidosis) or 5% CO2 (pH 7.4, control). Acidosis inhibited BAEC proliferation in 10% FCS, whereas by day 7 in serum-free medium, cell number was 3-fold higher in acidotic cells than in control cells. Serum deprivation enhanced BAEC apoptosis, and apoptotic cell death was markedly inhibited by acidosis. Additionally, acidosis inhibited FCS-stimulated migration in a modified Boyden chamber assay and FCS-stimulated differentiation into capillary-like structures on reconstituted basement membrane proteins. Conditioned media from BAECs cultured for 48 hours either at pH 7.0 or pH 7.4 enhanced BAEC proliferation and migration at pH 7.4, and both effects were more marked with conditioned medium from BAECs grown in acidotic than in control conditions. Acidosis enhanced vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) mRNA expression as well as bFGF secretion, and a blocking bFGF antibody inhibited enhanced BAEC migration in response to conditioned medium from acidotic cells. These results show that acidosis protects endothelial cells from apoptosis and inhibits their proangiogenic behavior despite enhanced VEGF and bFGF mRNA expression and bFGF secretion. (Circ Res. 2000;86:312-318.)
منابع مشابه
Acidosis inhibits endothelial cell apoptosis and function and induces basic fibroblast growth factor and vascular endothelial growth factor expression.
Endothelial cells are exposed to an acidotic environment in a variety of pathological and physiological conditions. However, the effect of acidosis on endothelial cell function is still largely unknown, and it was evaluated in the present study. Bovine aortic endothelial cells (BAECs) were grown in bicarbonate buffer equilibrated either with 20% CO(2) (pH 7.0, acidosis) or 5% CO(2) (pH 7.4, con...
متن کاملDetermination of Vascular Endothelial- and Fibroblast-Growth Factor Receptors in a Mouse Fibrosarcoma Tumor Model Following Photodynamic Therapy
The role of angiogenic molecules, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) in tumor angiogenesis was well confirmed. Photodynamic therapy (PDT) action is, to very high degree, based on tumor vasculature damage. Therefore, it seemed to be important to evaluate growth factor receptors after PDT. The extent of receptor expression was studied by immuno-histo...
متن کاملPatterns of Vascular Endothelial Growth Factor Expression in Hematopoietic Malignant Cells
Background and Objective: Vascular endothelial growth factor (VEGF) is a cytokine which is overexpressed in many malignant cancers including leukemia. VEGF plays an important role in tumor invasion and metastasis. Determination of the pattern of VEGF expression in human leukemic cell lines could be useful not only in screening of new antileukemic agents but also to study the mechanism of their ...
متن کاملEffect of different concentrations of leukemia inhibitory factor on gene expression of vascular endothelial growth factor-A in trophoblast Tumor Cell Line
Background: Several studies have shown that leukemia inhibitory factor (LIF) is one of the most important cytokinesparticipating in the process of embryo implantation and pregnancy, while, the role of this factor on vascular endothelialfactor-A (VEGF-A), as one of the most important angiogenic factor, has not been fully investigated yet. The aimof this study was to evaluate th...
متن کاملMesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor –A
Background: Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). Methods: VEGF-A was expressed in E. coli BL21 (DE3) and BL21...
متن کامل